Logics of propositional control for social choice

Nicolas Troquard (with Wiebe van der Hoek and Michael Wooldridge – University of Liverpool)

RMIT, Melbourne
Logics for social choice

- social software [Parikh 2001]: give to **societies of agents** what the theory of computation is to computers.
- why logic?
 - close to reasoning/computations;
 - axiomatic method.
Strategic games

- simple abstraction of agent interaction;
- a strategic game specifies a set of consequences and for each player:
 - a set of possible actions;
 - a preference ordering over the set of consequences.
and an outcome function mapping every action profile to a consequence.
- solution concept, equilibrium: function mapping a strategic game to a set of action profiles.
Objectives

A logic for reasoning about strategic games:
- \textit{characterising} solution concepts;
- \textit{finding} equilibria (model checking);
- \textit{checking} game solvability (theorem proving).

A logic for reasoning about social choice functions (e.g., voting procedures).

... by means of \textit{propositional control}.
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Logic</th>
<th>Immediate examples of application</th>
<th>Application to social choice functions</th>
</tr>
</thead>
</table>

Outline

1. Logic

2. Immediate examples of application

3. Application to social choice functions
Background: propositional control

(ATL model checking [Alur et al. 2000]; Boolean games: [Harrenstein et al. 2001]; Coalition Logic of Propositional Control [van der Hoek, Wooldridge 2005], [Gerbrandy 2006])

A frame of propositional control consists of:

- a set of controlled atoms A_t;
- a set of players N;
- a set of controlled atoms A_{t_i} for every player i.

Intuitively:

- action a_i of $i \in N \iff$ valuation θ_i of A_{t_i};
- action profile $a_N \iff$ valuation θ_N of A_t.
GPCC: Models

Definition

A game of propositional control with consequences is a tuple \(\langle N, At, (At_i), K, o, (\leq_i) \rangle \), such that:

- \(\langle N, At, (At_i) \rangle \) is a frame of propositional control;
- \(K \) is a nonempty finite set of atoms such that \(At \cap K = \emptyset \);
- \(o \) maps a \(\theta_N \) valuation to an element of \(K \);
- \(\leq_i \) is a preference relation over \(K \) for every agent \(i \).
GPCC: Language

Parameters:

- N: a set of players;
- At: a set of controlled atoms;
- K: a set of atoms of Konsequences.

The language $\mathcal{L}(N, At, K)$ is inductively defined by the following grammar:

$$\varphi ::= T \mid a \mid \neg \varphi \mid \varphi \lor \varphi \mid \Diamond C \varphi \mid \langle \leq i \rangle \varphi$$

where a is an atom of $At \cup K$, $C \subseteq N$ is a coalition and i is a member of N.
GPCC: Truth values

\[G = \langle N, At, (At_i), K, o, (\preceq_i) \rangle, \theta_N \text{ is a valuation of } At. \]

\begin{align*}
G, \theta_N \models p & \iff \theta_N(p) = \text{tt} & p \in At \\
G, \theta_N \models x & \iff o(\theta_N) = x & x \in K \\
G, \theta_N \models \Diamond_C \varphi & \iff \text{there is a valuation } \theta_N' \text{ such that } \\
& G, \theta_N' \models \varphi \text{ and } \forall j \in N \setminus C : \theta_{N}'_j = \theta_j \\
G, \theta_N \models \langle \preceq_i \rangle \varphi & \iff \text{there is a valuation } \theta_N' \text{ such that } \\
& G, \theta_N' \models \varphi \text{ and } o(\theta_N) \preceq_i o(\theta_N')
\end{align*}

Readings:
- \(\Diamond_C \varphi \): the players in \(C \) can deviate from their current strategy such that \(\varphi \).
- \(\langle \preceq_i \rangle \varphi \): agent \(i \) would prefer \(\varphi \).

Defined vocabulary

- Reifying the valuations (for every valuation $\theta_N \in \Theta$):
 \[
 \pi(\theta_N) \triangleq \bigwedge_{\theta_N(p)=tt} p \land \bigwedge_{\theta_N(q)=ff} \neg q.
 \]

- An operator of binary preferences (for every player $i \in N$):
 \[
 \psi \leq^i_{VV} \varphi \triangleq \Box_N \bigvee_{\theta_N \in \Theta} (\pi(\theta_N) \land (\varphi \rightarrow \Box_N(\psi \rightarrow \langle \leq_i \rangle \pi(\theta_N)))).
 \]
A first example

Consider a model G with $N = \{1, 2\}$, $At_1 = \{p_1, q_1\}$, $At_2 = \{p_2, q_2\}$, $K = \{x, y, z\}$. Suppose $z \prec_2 x \prec_2 y$.

<table>
<thead>
<tr>
<th>$\neg p_2 \land \neg q_2$</th>
<th>$p_2 \land \neg q_2$</th>
<th>$\neg p_2 \land q_2$</th>
<th>$p_2 \land q_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg p_1 \land \neg q_1$</td>
<td>$x \bullet$</td>
<td>$x \bullet$</td>
<td>$z \bullet \theta'_N$</td>
</tr>
<tr>
<td>$p_1 \land \neg q_1$</td>
<td>$z \bullet$</td>
<td>$x \bullet$</td>
<td>$z \bullet$</td>
</tr>
<tr>
<td>$\neg p_1 \land q_1$</td>
<td>$z \bullet$</td>
<td>$z \bullet$</td>
<td>$y \bullet \theta_N$</td>
</tr>
<tr>
<td>$p_1 \land q_1$</td>
<td>$z \bullet$</td>
<td>$z \bullet$</td>
<td>$x \bullet$</td>
</tr>
</tbody>
</table>

We have:

- $G, \theta_N \models \Diamond_1 \pi(\theta'_N)$
- $G, \theta_N \models \Diamond_1 x$
- $G, \theta'_N \models \langle \leq_2 \rangle \pi(\theta_N)$
- $G, \theta_N \models z \leq_2^\forall \forall x$
GPCC: Axiomatics

CL-PC [Gerbrandy 2006]

(Prop) \(\varphi \), where \(\varphi \) is a propositional tautology

(K(i)) \(\Box_i(\varphi \rightarrow \psi) \rightarrow (\Box_i\varphi \rightarrow \Box_i\psi) \)

(T(i)) \(\Box_i\varphi \rightarrow \varphi \)

(B(i)) \(\varphi \rightarrow \Box_i\varphi \)

(comp) \(\Box C_1 \Box C_2 \varphi \leftrightarrow \Box (C_1 \cup C_2 \varphi) \)

(empty) \(\Box_0 \varphi \leftrightarrow \varphi \)

(exclu) \((\Diamond_i p \land \Diamond_i \neg p) \rightarrow (\Box_j p \lor \Box_j \neg p) \), where \(j \neq i \)

(actual) \(\bigvee_{i \in \mathbb{N}} \Diamond_i p \land \Diamond_i \neg p \)

(full) \((\bigwedge_{p \in X} \Diamond_i p \land \Diamond_i \neg p) \rightarrow \Diamond_i \varphi_v \), where \(\varphi_v \) is the conjunction of literals true in one valuation \(v \) of \(X \subseteq \text{At} \)

Outcomes and preferences

(func1) \(\bigvee_{x \in K} (x \land \bigwedge_{y \in K \setminus \{x\}} \neg y) \)

(func2) \((\pi(\theta_N) \land x) \rightarrow \Box_N(\pi(\theta_N) \rightarrow x) \)

(incl) \(\Box N \varphi \rightarrow [\leq_i] \varphi \)

(K(\leq_i)) \([\leq_i](\varphi \rightarrow \psi) \rightarrow ([\leq_i] \varphi \rightarrow [\leq_i] \psi) \)

(4(\leq_i)) \(\leq_i \varphi \rightarrow (\leq_i) \varphi \)

(connect) \((\varphi \land \Diamond_N \psi) \rightarrow (\leq_i) \psi \lor \Diamond_N (\psi \land (\leq_i) \varphi) \)

(unifPref) \((x \land (\leq_i) y) \rightarrow x \leq_{i,v} y \)

Rules

(MP) from \(\vdash \varphi \rightarrow \psi \) and \(\vdash \varphi \) infer \(\vdash \psi \)

(Nec(\Box_i)) from \(\vdash \varphi \) infer \(\vdash \Box_i \varphi \)
Outline

1. Logic
2. Immediate examples of application
3. Application to social choice functions
Characterising equilibria: e.g. Nash equilibrium

Equilibrium: property of action profile \iff property of valuation

Weak best response by the agent i:

$$WBR_i \triangleq \bigvee_{x \in K} (x \land \Box_i(\preceq_i x))$$

Nash equilibrium:

$$NE \triangleq \bigwedge_{i \in N} WBR_i$$

And many more solution concepts.
Finding equilibria (by model checking)

Model checking [Clarke, Grumberg, Peled 1999]:
- Input: a model M and a formula φ;
- Output: $\{s \in S : M, s \models \varphi\}$.

Here, e.g. finding Nash equilibria:
- Input: a GPCC G and the formula NE;
- Output: $\{\theta_N \in \Theta : G, \theta_N \models NE\}$.
Game solvability (by theorem proving)

The “wedding scenario” [Gibbard, 1974]:

- Three players: Angelina (a), Edwin (e) and the male Judge (j);
- Angelina can choose to get married (p'_a);
- Angelina can choose to marry Edwin (p_a) or the Judge ($\neg p_a$);
- Edwin (resp. the Judge) can choose to marry Angelina (p_e (resp. p_j)) or to stay single;
- The consequences are that Angelina marries Edwin (m_e) (resp. the Judge (m_j)) when both of them choose so; otherwise she stays single (s).
Game solvability (by theorem proving)

- encoding the controls:
 \[\rho \triangleq (\diamond a p_a \land \diamond a \neg p_a \land \diamond a p'_a \land \diamond a \neg p'_a) \land (\diamond e p_e \land \diamond e \neg p_e) \land (\diamond j p_j \land \diamond j \neg p_j). \]

- encoding the outcome function:
 \[\omega_{m_e} \triangleq m_e \leftrightarrow (p'_a \land p_a \land p_e). \quad \text{(marrying Edwin)} \]
 and
 \[\omega_{m_j} \triangleq m_j \leftrightarrow (p'_a \land \neg p_a \land p_j). \quad \text{(marrying the Judge)} \]
We can verify that this scenario has a Nash solvable representation, stated by the validity of

$$\rho \land \omega_{m_e} \land \omega_{m_j} \rightarrow \diamond_NNE$$

in the logic $\Lambda(\{a, e, j\}, \{p_a, p'_a, p_e, p_j\}, \{s, m_e, m_j\})$.

<table>
<thead>
<tr>
<th></th>
<th>p_e</th>
<th>$\neg p_e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_a \land p'_a$</td>
<td>m_e</td>
<td>s</td>
</tr>
<tr>
<td>$\neg p_a \land p'_a$</td>
<td>m_j</td>
<td>m_j</td>
</tr>
<tr>
<td>$p_a \land \neg p'_a$</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>$\neg p_a \land \neg p'_a$</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>p_e</th>
<th>$\neg p_e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_a \land p'_a$</td>
<td>m_e</td>
<td>s</td>
</tr>
<tr>
<td>$\neg p_a \land p'_a$</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>$p_a \land \neg p'_a$</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>$\neg p_a \land \neg p'_a$</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>
‘natural’ logic for reasoning about problems of strategic games;
expressive language: Pareto optimality, dominance, strong Nash equilibrium, core membership...;
decidable logic;
application to:
 finding strategic equilibria;
 game solvability;
 implementation theory (→ next slides)
 [Troquard, van der Hoek, Wooldridge (TARK’09)].
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Logic</th>
<th>Immediate examples of application</th>
<th>Application to social choice functions</th>
</tr>
</thead>
</table>

Outline

1. Logic
2. Immediate examples of application
3. Application to social choice functions
Social choice functions as strategic game forms:

- A social choice function associates a consequence to every preference profile. (e.g., voting procedure.)
- Mathematically equivalent to a strategic game form where the set of actions for every agent is the set of preferences over K.

We design a logic similar to previously, except:

- Preferences are linear order (for simplicity);
- Valuations of controlled atoms encode a preference profile.
Definitions and notations

- N is the set of players; K is the set of consequences;
- $L(K)$ is the set of linear orderings over K;
- $At[i, K] = \{ p^i_{x>y} \mid x, y \in K \}$ is the set of atoms controlled by i;
- $At[C, K] = \bigcup_{i \in C} At[i, K]$ is the set of atoms controlled by C;
- $\text{strategies}[i, K]$ is the set of valuations of $At[i, K]$ such that it “encodes a linear order”: strategies of i;
- for every coalition $C \subseteq N$, we note $\text{strategies}[C, K]$ the set of tuples $v_C = (v_i)_{i \in C}$ where $v_i \in \text{strategies}[i, K]$.

Intuitively...

- an action of $i \in N \iff$ a linear preference over $K \iff$ a valuation in $\text{strategies}[i, K]$
- a strategy profile \iff a preference profile \iff valuation in $\text{strategies}[N, K]$
The language $\mathcal{L}^{scf}[N, K]$ is inductively defined by the following grammar:

$$\varphi ::= \top | p | x | \neg \varphi | \varphi \lor \varphi | \Diamond C \varphi | \langle <i \rangle \varphi.$$

where p is atom of $\text{At}[N, K]$, x is an atom of K, $i \in N$, and C is a coalition.
Models

Definition (model of social choice functions)

A *model of social choice functions over* N and K *is a tuple* $M = \langle N, K, out, (<_i) \rangle$, *such that:*

- $N = \{1, \ldots, n\}$ is a finite nonempty set of players;
- K is a finite nonempty set of consequences;
- $out : strategies[N, K] \rightarrow K$ maps every strategy profile to a consequence;
- For every $i \in N$, $<_i \in L(K)$ is the true preferences of i.
Definition (truth values of $L^{scf}[N, K]$)

Given a model $M = \langle N, K, out, (\prec_i) \rangle$, we are going to interpret formulas of $L^{scf}[N, K]$ in a preference profile $v \in \text{strategies}[N, K]$ of the model. The truth definition is inductively given by:

- $M, v \models p$ iff $p \in v_i$ for some $i \in N$
- $M, v \models x$ iff $\text{out}(v) = x$
- $M, v \models \neg \varphi$ iff $M, v \not\models \varphi$
- $M, v \models \varphi \lor \psi$ iff $M, v \models \varphi$ or $M, v \models \psi$
- $M, v \models \Diamond_C \varphi$ iff there is a $u \in \text{strategies}[N, K]$ such that $v_i = u_i$ for every $i \notin C$ and $M, u \models \varphi$
- $M, v \models (\prec_i) \varphi$ iff there is a $u \in \text{strategies}[N, K]$ such that $\text{out}(v) \prec_i \text{out}(u)$ and $M, u \models \varphi$
Ballots: propositional encoding

Definition (ballot)

For every player \(i \in N \), we can see every \(<_i \in L(K) \) as a permutation \([x_1, x_2 \ldots]\) of the elements of \(K \), where the more to the left the consequence is, the more it is preferred by the player \(i \). We can reify in the language the reported preferences, that is, the ballot casted by the player \(i \):

\[
\text{ballot}_i(<) \triangleq p^i_{x_1>x_2} \land p^i_{x_2>x_3} \land \ldots p^i_{x_{|K|-1}>x_{|K|}}.
\]

Then, the formula

\[
\text{ballot}(<) \triangleq \bigwedge_{i \in N} \text{ballot}_i(<)
\]

is a reification of the reported preference profile \(< = (<_1, \ldots, <_n)>\), consisting of one ballot for every player \(i \in N \).
Characterising social choice functions

Definition (SCF characterisation)

We say that the formula $\rho^F \in \mathcal{L}^{scf}[N, K]$ characterises the social choice function F if for all $\prec \in L(K)^N$ and $x \in K$ we have:

$$F(\prec) = x \ \text{iff} \ \models_{\Lambda^{scf}[N,K]} \rho^F \rightarrow \Diamond_N(\text{ballot}(\prec) \land x).$$

Remark (expressively complete)

For every social choice function F there is always such a characteristic formula ρ^F.
True preferences

The agent i prefers the proposition ψ over φ:

$$\psi \preceq_i \varphi \triangleq \square_N \bigvee_{< \in L(K)^N} (\text{ballot}(<) \land (\varphi \rightarrow \square_N(\psi \rightarrow \langle i \rangle \text{ballot}(<)))).$$

Definition (true preferences)

from a preference profile $< \in L(K)^N$, we reify the preference $[x_1, x_2 \ldots]$ of the player i as follows:

$$\text{true}_i(<) \triangleq (x_{|K|} \preceq_i x_{|K|-1}) \land \ldots \land (x_3 \preceq_i x_2) \land (x_2 \preceq_i x_1).$$

Then, the formula

$$\text{true}(<) \triangleq \bigwedge_{i \in N} \text{true}_i(<)$$

is a reification of the true preference profile $<= (<_1, \ldots, <_n)$.

Λ(\(N, At, K\)): Axiomatics

<table>
<thead>
<tr>
<th>Constraints of control</th>
<th>(p_x^{i,x})</th>
<th>(p_x^{i,y} \leftrightarrow \neg p_y^{i,x}), where (x \neq y)</th>
<th>(p_x^{i,y} \land p_y^{i,z} \rightarrow p_x^{i,z})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(refl)</td>
<td>(p_x^{i,x})</td>
<td>(p_x^{i,y} \leftrightarrow \neg p_y^{i,x}), where (x \neq y)</td>
<td>(p_x^{i,y} \land p_y^{i,z} \rightarrow p_x^{i,z})</td>
</tr>
<tr>
<td>(antisym-total)</td>
<td>(p_x^{i,y} \leftrightarrow \neg p_y^{i,x}), where (x \neq y)</td>
<td>(p_x^{i,y} \land p_y^{i,z} \rightarrow p_x^{i,z})</td>
<td></td>
</tr>
<tr>
<td>(trans)</td>
<td>(p_x^{i,y} \land p_y^{i,z} \rightarrow p_x^{i,z})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propositional control</th>
<th>(\varphi), where (\varphi) is a propositional tautology</th>
<th>(\Box_i(\varphi \rightarrow \psi) \rightarrow (\Box_j \varphi \rightarrow \Box_j \psi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Prop)</td>
<td>(\Box_i(\varphi \rightarrow \psi) \rightarrow (\Box_j \varphi \rightarrow \Box_j \psi))</td>
<td></td>
</tr>
<tr>
<td>(K(i))</td>
<td>(\Box_i \varphi \rightarrow \varphi)</td>
<td></td>
</tr>
<tr>
<td>(T(i))</td>
<td>(\square \varphi \rightarrow \varphi)</td>
<td></td>
</tr>
<tr>
<td>(B(i))</td>
<td>(\varphi \rightarrow \square_i \varphi)</td>
<td></td>
</tr>
<tr>
<td>(comp∪)</td>
<td>(\Box C_1 \Box C_2 \varphi \leftrightarrow \Box (C_1 \cup C_2) \varphi)</td>
<td></td>
</tr>
<tr>
<td>(empty)</td>
<td>(\square \varphi \leftrightarrow \varphi)</td>
<td></td>
</tr>
<tr>
<td>(exclu)</td>
<td>(\Diamond_i p \land \Diamond_j \neg p \rightarrow (\Diamond_j p \lor \Diamond_j \neg p)), where (j \neq i)</td>
<td></td>
</tr>
<tr>
<td>(ballot)</td>
<td>(\Diamond_i \text{ballot}(\langle\rangle))</td>
<td></td>
</tr>
<tr>
<td>(comp-At)</td>
<td>(\Diamond C_1 \delta_1 \land \Diamond C_2 \delta_2 \rightarrow \Diamond (C_1 \cup C_2) (\delta_1 \land \delta_2))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consequences and preferences</th>
<th>(\bigvee_{x \in K}(x \land \bigwedge_{y \in K \setminus {x}} \neg y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(func1)</td>
<td>(\bigvee_{x \in K}(x \land \bigwedge_{y \in K \setminus {x}} \neg y))</td>
</tr>
<tr>
<td>(func2)</td>
<td>((\text{ballot}(\langle\rangle) \land \varphi) \rightarrow \Box N (\text{ballot}(\langle\rangle) \rightarrow \varphi))</td>
</tr>
<tr>
<td>(incl)</td>
<td>(\square N \varphi \rightarrow \langle i \rangle \varphi)</td>
</tr>
<tr>
<td>(K(<i)))</td>
<td>([<i](\varphi \rightarrow \psi) \rightarrow ([<i] \varphi \rightarrow [<i] \psi))</td>
</tr>
<tr>
<td>(4(<i)))</td>
<td>(\langle i \rangle (<i \rangle \varphi \rightarrow (<i \rangle \varphi))</td>
</tr>
<tr>
<td>(antisym')</td>
<td>((\text{ballot}(\langle\rangle) \land (<i \rangle \text{ballot}(\langle\rangle)) \rightarrow \Box_N (\text{ballot}(\langle\rangle) \rightarrow [<i \rangle \neg \text{ballot}(\langle\rangle)))</td>
</tr>
<tr>
<td>(total')</td>
<td>((\text{ballot}(\langle\rangle) \land (<i \rangle \text{ballot}(\langle\rangle)) \lor \Box_N (\text{ballot}(\langle\rangle) \rightarrow (i \rangle \text{ballot}(\langle\rangle)))</td>
</tr>
<tr>
<td>(unifPref)</td>
<td>((x \land (<i \rangle y) \rightarrow (x \downarrow_i y))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rules</th>
<th>(\vdash \varphi \rightarrow \psi) and (\vdash \varphi) infer (\vdash \psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MP)</td>
<td>(\vdash \varphi \rightarrow \psi) and (\vdash \varphi) infer (\vdash \psi)</td>
</tr>
<tr>
<td>(Nec((\Box_i)))</td>
<td>(\vdash \varphi) infer (\vdash \Box_i \varphi)</td>
</tr>
</tbody>
</table>
Some properties of social choice functions

<table>
<thead>
<tr>
<th>Concept</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citizen sovereignty</td>
<td>$\text{CITSOV} \triangleq \bigwedge_{x \in K} \Diamond_N x$</td>
</tr>
<tr>
<td>Non dictatorship</td>
<td>$\text{NODICT} \triangleq \bigwedge_{i \in N} \Diamond_N \left(\bigvee_{x \in K} \left(x \land \bigvee_{y \in K \backslash {x}} p_{y > x}^i \right) \right)$</td>
</tr>
<tr>
<td>i’s best response</td>
<td>$\text{BR}i \triangleq \bigvee{x \in K} \left(x \land \Box_i \langle <_i \rangle x \right)$</td>
</tr>
<tr>
<td>Dominance equilibrium</td>
<td>$\text{DOM} \triangleq \bigwedge_{i \in N} \Box_{N \backslash {i}} \text{BR}_i$</td>
</tr>
<tr>
<td>Strategy-proofness</td>
<td>$\text{STRPROOF} \triangleq \bigwedge_{< \in L(K)^N} \left[\text{true}(<) \rightarrow (\text{ballot}(<) \rightarrow \text{DOM}) \right]$</td>
</tr>
</tbody>
</table>
The logics we have presented are:
- axiomatised;
- decidable;
- expressive.

Future work:
- compact languages;
- integrate epistemic/doxastic notions.